在新型電光源中的應用,如鈧-鈉素燈,該燈發(fā)出的光接近太陽光,具有光度高,光色好,節(jié)電能,壽命長,破霧能力強等。納米氧化鎵在激光中的應用,在GGG加入鈧后,制成GSGG,發(fā)射功率比同體積的其它激光器提高了三倍,并可達到大功率化和小型化的要求。在合金中的應用:在合金材科中主要用于合金的添加劑和改性劑,在鋁及鋁合金中加入鈧后,可有效提高合金的綜合性能。高純納米氧化鎵粉末如合金的強度、硬度、耐熱性、耐蝕性和焊接性等有明顯提高。在其它領域的應用:如在中子過濾材料中加入鈧后,在核燃料過濾時,可防止UO2發(fā)生相變,利于運行作業(yè)。如含鈧的陰極用于彩電顯像管內,使的電源密度提高4倍,陰極使用壽命增長3倍等。
氧化鎵是一種新興的功率半導體材料,其禁帶寬度大于硅,氮化鎵和碳化硅,在高功率應用領域的應用優(yōu)勢愈加明顯。納米氧化鎵但氧化鎵不會取代SiC和GaN,后兩者是硅之后的下一代主要半導體材料。納米氧化鎵粉末氧化鎵更有可能在擴展超寬禁帶系統(tǒng)可用的功率和電壓范圍方面發(fā)揮作用。而最有希望的應用可能是電力調節(jié)和配電系統(tǒng)中的高壓整流器,如電動汽車和光伏太陽能系統(tǒng)。但是,在成為電力電子產品的主要競爭者之前,氧化鎵仍需要開展更多的研發(fā)和推進工作,以克服自身的不足。
幾年來,科學家們也一直致力于研究這種材料氧化鎵(ga2O3)。納米氧化鎵這種新型半導體的帶隙相對較大,為4.8電子伏,這意味著在電力電子領域,特別是在高電壓被轉換成低電壓的情況下,氧化鎵至少部分地可以超過當前恒星的階段:硅(Si)、碳化硅(SiC)和氮化鎵(GaN)。忻州高純納米氧化鎵粉末到目前為止,SiC是唯一一種不易產生明顯缺陷的基體,但外延生長速度相對較慢。對于氮化鎵來說,仍然沒有有效的方法來生產大體積的合適的單晶。因此,它被沉積到像藍寶石或硅這樣的外來基板上,但它們的不同晶格常數導致了外延過程中的錯位。
三氧化二鉍純品有α型和β型。α型為黃色單斜晶系結晶,相對密度8.9,熔點825 ℃,溶于酸,不溶于水和堿。納米氧化鎵β型為亮黃色至橙色,正方晶系,相對密度8.55,熔點860 ℃,溶于酸,不溶于水。容易被氫氣、烴類等還原為金屬鉍。氧化鉍用于制備鉍鹽;用作電子陶瓷粉體材料、電解質材料、光電材料、高溫超導材料、催化劑。高純納米氧化鎵氧化鉍作為電子陶瓷粉體材料中的重要添加劑,純度一般要求在99.15%以上,主要應用對象有氧化鋅壓敏電阻、陶瓷電容、鐵氧體磁性材料三類;以及釉藥橡膠配合劑、醫(yī)藥、紅色玻璃配合劑等方面。